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ABSTRACT

The tapered cable concept is explored and developed. The intro-
duction is followed by a review of histerical background, examination
of several types of taper from a geometrical viewpoint, and the deri-
vation of the equilibrium equations pertaining to two cases of general
interest: the axially suspended cable and the catenary cable config-
uration. These equations are then used to make comparisons between
the optimum, tapered cable and the common cable. Advantages and
disadvantages of the tapered cable are summarized and a set of tables

ig provided to assist in constant-stress catenary cable calculations.
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CHAPTER I

INTRODUCTION

This report has resulted from a consideration of deep ocean
applications of cables and cable systems, specifically steel-wire
rope. In such applications, where extremely long lengths of cable
are required, & major problem arises. As the cable length increases,
so does the cable weight, until a significant portion of the avail-
eble strength of the cable is used in supporting itself, thereby
reducing the permissible payload. A possible solution to this
weight-load interdependence is to taper the cable from a large diz-
meter at the top to a smaller diameter at the bottom. This results
in a lighter weight cable with greater load-carrying capacity.

The objective of this investigation is to develcp the equili-
brium equations governing the static configuration to which a tapered
cable conforms, and to use these equations to investigate the possible
advanteges that a tapered cable may have in common ocean applications.

The term "cable" is defined in the traditional mathematical
sense as any inextensible, flexible gtring. A model basged on
these assumptions can reasonably approximate submarine communication
cables, high tension electric power transmission lines, electro-

mechanical cables for towed sonar applications, and mooring cables and



chains, provided that the necessary assumptions are appropriate to
the application. The term "common cable" will be used for all non-
tapered, uniform-diameter cables.

Ocean applications typically fall into one of two major classi-
ficationg; towing or mooring. The towing application occurs when-
ever an end of the cable is attached tc a ship, or other moving ob-
Ject, and the other end to some payload, which iz being pulled along.
The mooring application ocecurs when one end is fixed to the ocean
bottom with the cable being supperted by a ship, buoy or other
flecating body and the moor holding the body in a relatively fixed
position with respect to the bottom. Fig., 1 illustrates several
such deep-ocean applicaticns. Although this study will be largely
concerned with mooring situations, many of the same mathematical
relationships can be applied to towing problems. Fig. 2 presents a
geometrical compariscn of the two classifications, showing the rela-
tive direction of drag D, cable weight W, cable tension T and
current. Cable applications can also be categeorigzed as one-dimen-—

sional and two-dimensional.
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CHAPTER II
HISTORICAL BACKGROUND

The use of cables by man goes back before recorded history.
Primitive bridges were frequently constructed of cables made from
woven vines or native fibers. Existing examples of such suspension
bridges can still be found in South Americq. These were originally
designed by the Incas and have been continuously rebuilt until the
present time. This has been shown by Jakkula (5) to be fairly typi-
cal of man's bridge building over much of the world, including Asia,
Africa, Europe and Russia.

By about 65 A.D. the Chinese were constructing what would appear
to be rather modern suspension bridges using iron chains as support-
ing cables with appropriate auxiliary structure to produce a nearly
level walkway, many of which were still sténding at the turn of the
century.

Early applications also existed at sea. One can well imagine
even the very early log or raft rider tying up his watercraft with
a line to a tree on shore. The method of mooring had changed a great
deal by Roman times, with the application of iron chains, to secure
ship anchors. The use of iron chains was extremely advanced since,
even up until the nineteenth century, rope cables were still used for
anchors on most large sailing vessels.

Both suspension bridge and mooring cable applications are

closely related mathematically. One of the first scientists to



meditate upon the posgsible mathematics of cables may have been
Galileo. Montucla {9) notes that Galileo considered the hanging

chain to take the form of a parabola. Joachim Jurgins, the German
geometrician, showed by geveral methods, in about 1669, that the
hanging chain was neither a parabola nor a hyperbola. However, he
was unable to shed any light on what the actual shape was. These
were the years when calculus was being invented by Newton and Leibniz.
Jakob (James) Bernoulli, through Leibniz's writings, had become
familiar with calculus. He proceeded to apply it to wvarious problems,
one of which was the chain or hanging cable. Bernoulli proposed the
problem and he, his brother Johann (Jean), Leibniz and Huygens all
solved it. They each published their solutions in the Actes de
Leipzig in 1691, A few years later, in 1697, David Gregory pub-
lished a solution in the Philosophical Transactions in London. All

"catenary', from the

of these solutions result in what is called the
Latin "catenarius", a chain.

The somewhat simpler problem of defining the approximate geome-
try of a suspension bridge support cable was not solved until 1794,
when Nicholas Fuss developed the parabelic cable solution as a
result of the proposal to construct a bridge across the Neva River
in Russia.

In 1858, the Astronomer Royal of England, G. B. Airy, investi-

gated the shape attained as a submarine cable was deposited. This



study was initiated in response to problems encountered during the
laying of the first trans-Atlantic cable., Alry demonstrated that a
paying out cable assumes the form of a catenary traveling at the
speed of the cable-laying ship, if it is payed out at the same speed
as the ship moves and fluid resistance is ignored.

Applications such as the above involve the difficult probliem
of determining the hydrodynamic forces which act on the cable due to
its relative motion through water. Landweber, from 1936 to about
1947, developed Tables of Cable Functions (7), by which the tension
and loads on a cable immersed in a uniform current could be determined.
This work was extended by Pode (13) and is applicable to both moor-
ing and towing problems. The general availability of digital com-
puters has led many recent investigators (3, 8) to use salternative
procedures incorporating numerical techniques. The most commonly
used of these is the finite element method, in which the cable is
divided into a series of interconnected straight lengths with the

solution being carried out in an iterative manner.

Tapered Cables

A review of the literature reveals & general lack of such ana-
lytical development for the tapered cable. Although Gilbert (&)
investigated what he called "the catenary of equal strength" in 1826,
and Routh (14) later referred to it in 1891, the idea was apparently

dropped due to lack of distinct advantages in bridge applications.



A number of investigators have made casual mention of the tapered
cable concept, with Terry (15) commenting on some of the limitations
of present day cables (wire ropes) due to the cable's own weight at
great depths, This was one of the limitations on Beebe and Barton's
Bathysphere of 1934 and Benthoscope of 1950,

In the “"Reports of the Swedish Deep-Sea Expedition", Kullenberg
(6) describes the use of what he called a tapered cable aboard the
Swedish oceanographic vessel ALBATROSS. This cable was composed of
three sections with diameters of 20, 16 and 12 millimeters and
lengths of 2,170, 2,820 and 3,000 meters, respectively.

Markula (8), in a study of aircraft target towlines, investi-
gated reducing cable tension by use of a tapered cable, providing a
reduction in both aerodynamic forces and weight. Markula went on
to state that fabricatlon of the tapered cable was probably not
feasible and suggested the use of a stepped diameter cable composed
of varying lengths of constant diameter cables; adjacent lengths
being of different diameters to roughly approximate the ideal
tapered cable concept. The authors include & computer program to
aid in design of such a stepped cable.

More recently, Notwatzkl (11) considered the advantages to be
accrued by a "perfectly tapered cable". He was primarily inter-
ested in electro-mechanical cable strength meﬁbers and presented
equations for the case of a simple vertical hanging cable with no

horizontal tension components. Notwatzki conceded that 1t is



difficult to construct a "perfectly tapered cable" but that it can
be closely approximated by reducing the strength member area in
several steps, i.e., the stepped cable as studied by Markula.

It then appears that while a number of people have actually
considered the tapered cable idea, and in some cases attempted
limited analysis, none have developed a complete analytical base
vwhich permits rational progress. Indeed, it sppears that the indivi-
dual investigators were generally not aware of any previous work in
the area, so that little continuity of investigation has been ob-

served.
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CHAPTER IIT
ONE-DIMENSIONAL CABLE BEHAVIOR

A cable, if allowed to hang free under the influence of gravity
ocnly, conforms tc & vertical sitraight line. This one-~dimensional
configuration can serve as a convenient medium for considering dif-
ferent types of tapered cables. Simply stated, a tapered cable is
one in which the cross-secticnal area varies in some specified man-
ner from one end to the other. Table 1 indicates soms possible
variations with the meaning of symbols defined in Appendix IV.

The first two will be derived in later sections, and are based
on constant stress throughout the lengith of cable for two separate
design conditions. The next, the straight-taper "D, is a linear
variation of diameter with length (Fig. 3), while the straight-
taper "A" is a linear variation of cross-sectional area with lengtn.
The remaining types, the parabolic and the sine, are shown to indi-
cate some of the other possibilities.

Two taper conditions will be considered in detail in this
paper leading to configurations which have been labeled E-tapered
and Constant-Stress Catenary. While these are optimized for their
gpecific applications, they are not necessarily the best for devia-
tions from design conditions, for design situations with currents
present, or for other similar but not identical conditions.

The first case to be analyzed is the axially suspended cable.

This is exemplified by the Bathysphere illustration in Tig, 1. The
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Fig. 3
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common constant diameter ceble will be examined first and then
the constant-stress (tapered) cable. These are then compared to

illustrate the possible advantages that tapering may provide.
Common Axially Suspended Cables

The vertically hung cable assumes the simplest of cable geo-
metries and is therefore an appropriate starting point for consi-
dering the effects of tapering. This configuration is also of
widespread practical importance. Fig. 4 illustrates this, which
can be thought of as a cable hanging from a ship with a load at-
tached %o its end. It is assumed that the only external forces
that act on the cable are those produced by gravity.

It is apparent that

S
T = f wds + P

c

where: P = load supported by the ecable

s = distance along the cable measured from the bottom
end

T = cable tensicn

w = weilght/unit length of cable

When the above expression is integrated, the tension at any point
s along the ceble is defined as

T P
Cable tension thus varies with the length and distributed weight of

the cable. It is then possible to define a factor of safety, F ,
8

13
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based on the ultimate static breaking sitrength, Su’ as

Foo= Su
5] E""
Where the allowable load Pa that a cable of length s can carry

before exceeding its design condition is

S
P = U = W8 o 0 v v v v v e e e e e e e e e (2)
a F
S

Fig., 5 illustrates the relation thait exists between Pa and the cable
length, for four factor-of-safety values, applied to the tension
at the top of the cable.

To use Fig. 5, find the cable length along the left-hand side,
then move horizontally to the curve representing the factor of
safety of interest and read the allowable load at the top scale.
Note the cable-breaking-strength line. It is readily observable
that the local factor of safeby increases toward the lower end of the
cable, pointedly illustrating the fact that the cablie is much
stronger near the bottom than it needs to be. By the same token,
the weight of the cable, which is & major contribution to the low
factor of safety at the top of the cable, is much greater than it
needs to be, For the steel-wire rope illusirated, at about a length
of 55,000 feet, the cable can just su?port its own weight with a

Safety Factor of 2 (FS = 1),

For other materialis with greater strength-to-weight ratios,
the curves would be displaced to the right, meaning that leonger

lengths can be supported, or a greater Pa for the same length.
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Conversely, for reduced strength-to-weight ratiocs, only shorter
cobles or reduced allowable loads are possible. Since safety factors
recommended by the wire rope industry are in the order of five, it
is readily spparent that deep-water applications of wire rope are
highly limited. This 1is particularly true when additional allowance
must be made for dynamic loads being imposed on the cable. It is
apparent that if excess material could be removed from the lower
end of the cable, where it is not required for supporting the load,
and replaced on the upper end, & better cable design would result.

This is what the tapered cable design attempts to do. It may
be noted that for materials of lower specific weight, the slope of

the FS = 1 iine tends %o increase until, for a neutrally bucyant

cable, it becomes superimposed over the bresking strength 1line

indicating a constant load~-carrying capacity at any cable length.
Tapered Axially Suspended Cables

Although several types of tapers are possible, it is highly
desirable to devise an opbimum taper configuraticon sc as to maxi-
mize the load carrying capacity by minimizing the total welght of
the ceble. Minimal cable weight not only enables a maximum load
to be carried by the cable, but reduces the size and required power
of a ship's winch. In buoy-mooring applications, a decrease in
cable weight may permit reducing the size of the buoy. The opbtimum
use of cable material is achieved only when the stress is constant

throughout the cable length.
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Fig. 6 depicts a typical section of cable. T defines the
tension at the lower end of the cable, and AT defines the change in
tension due to the weight of the section, W. The segment weight
may then be defined as

A

W = yAAs

with

unit weight of cable material

N
A = average cross—sectional srea of cable

As small increment of cable length
If the cable segment is assumed to be in static equilibrium,
a summation of forces in the vertical direction gives
AT = y A
As
Taking the limit as As + 0 results in the following differential
equation:
AT = ¥ AdS « v v v v v v v e e e e e e e e e (3)
The stress ¢ , at any point can be expressed as a function of the
cable tension and cable area A, at that point
o T N € 19
The substitution of Eg. 4 into BEq. 3 yields
AT =Y T d5 « v v v v v e e e e e e e (5)
a
When integrated, assuming v and ¢ are constant, Eq. 5 provides the

following relationship

T= T e T € 53

where TO represents the tension or load at the bettom of the
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Fig. 6 Forces on a Tapered Cable Segment



cable corresponding to s = o. The substitution of Eg. k into Fg. 6

allows for a given area at the bottom of cable, Ab’ when g 1is

expressly defined as being constant throughout the cable.

T= Ao’e - N T . - - - - - . . . .« . . + O(T)

X¥s

a
A = AO e N € <))

or to reduce to a ratio
XS

T = 4 = ¢&° e e e e Co e (9)
T A
e} o)

Egs. 5 and B constitute the descriptive equations for what
Nowatzki called a "perfectly tapered cable”". Herein, this will be
referred to as an E-tapered cable.

In Fig. 7, Eg. 9 is plotted using a unit welght, vy , typical
of steel~wire rope and several representative values of g. To use,
enter the chart on the length of cable scale and move to the right
to the line representing the operating stress level desired. Then
the ratio of T/To can be read from the abscissa and T calculated
for the given depth.

It is also possible to show that the total cable weight is

given by
¥s
o
Wo= T (e 1 St e K¢ ))
s
= A o(ed “1)e o e e e . 1)
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Comparison

It is now possible to compare the tapered with the common cable
for the axiaily suspended condition. Parameters of interest to en-
gineering design include cable diameter or area, load carrying
capacity, cable weight and potential current effects. Fig. 8 pre-
sents a comparison of the common cable cross-sectional area to that
of an E-tapered cable with the same top diameter of 1 inch. The
tapered cable stress g was taeken as 100,000 psi. This illustrates
the major difference in crosgs-sectional area between the tapered
and common cables even for a modest length cable. Two other taper
designs, based on the same top and bottom areas have been plotied
to show the small variation from the E-tapered configuration that
oceurs.

Fig. 9 compares the load-carrying capacity of tapered and
common cables. In the cases chosen for illustration, the cables
are all of 1 inch diameter at the top and are loaded to a maximum
stress level of 100,000 psi (Fs = 1), or 50,000 psi {FS = 2), It
is apparent that the load-carrying capacity of the tapered cable
exceeds that of the common cable for the same length., This excess
strength is amplified at the higher factor of safety. ¥ig. 10
illustrates the total weight relationship that exists for cables
of the same length. The tapered cable is shown to be lighter in
weight at all lengths.

Many cable applications involve towing a sonar or instrumenta-—
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tion device behind a slowly moving ship. Tapering should reduce

the drag on such a cable and thereby produce a lower cable tension
for the same load, and reduced length to reach the same operational
level. To enable a comparison of current effects upon cables, a
finite element computer program was used as described in Appendix VI.
This program makes it possible to incorporate cable position hydro-
dynamic forces into the equilibrium analysis. Fig. 11 depicts the
effects of 1-knot, 2-knot and k-knot currents on the cables, each
having a 1 inch top diameter and a 8,000 pound load suspended from
the lower end. The cables were selected to represent a typical con-
figuration for a towed instrumentation package with the drag of the
icad being simulated by use of a 1,000 pound constant horizontal
force in the direction of the current. This force is maintained
constant for all currents so that the effect of the currents on the
cable will not be obscured. The difference in drag for this set of
cenditions is shown to be very small as illustrated by the small
separation between the common cables and the tapered cables at all

currents.
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CHAPTER 1V

TWO-DIMENSTONAL CABLE BEHAVIOR

Many cable applications in the ocean are of a two- and three-
dimensional nature, Consequently, the one-dimensional theory pre-
sented must be expandéd. A good example of this is the sub-surface
buoy with a multi-legged moor illustrated in Fig. 1. Each of these
mooring legs conform to a segment of a catenary if currents are not
present. Analysis of these mooring cables can usually be performed
in a two~dimensional framework. It is often desirable, when using
mechanical anchors, to have a length of chain laying on the sea
floor to insure that the shank of the anchor is not lifted by the
motion of the moored vessel and to absorb some of the shock brought
about by the action of waves (Fig. 12).

In this type of situation, the cable or chain is tangent to
the sea floor at the lowest point of the catenary. The cases to
follow will all be limited to cables which are tangent to the sea

floor.
The Common Catenary

A homogeneous constant diameter cable takes the form of a
catenary when supported between the points separated by a horizon-
tal distance. It is useful to examine the catenary in some detail
since it is a basic cable shape occurring when hydrodynamic forces

are not present. Fig. 13 illustrates a portion of such a cable
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Fig. 13 C(Catenary Nomenclature and Coordinate System
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as it might appear in a mooring application. The tension at any
point along the cable is composed of a horizontal and a vertical
component. The horizontal component TH is the same everywhere along
the cable, while the vertical component, TV’ is equal to the weight of
the cable between point A, where the slope of the cable is 0, and
the point of interest. At point A, the point where the cable be-

)

comes tangent to the ccean floor, T = TH and the tension at any point

is defined as

2 2
= + - * - » . - - - a L] L] . * L] - L] -+ - 1
T Ty T, {(12)
where

TH = constant horizontal ftension component

T = W =

. WS
W = +total weight of cable length s

Due to the space required, the complete derivation of the catenary
has been relegated to Appendix IT. There the assumptions are made
and the formulation of the basic cable differential equations are
provided. This has the intended purpose of introducing the reader
+0 the basic method of solving the cable eguations gsed later to
expressly solve for the constant-stress catenary relations. From
this development, the following two-dimensional equations are deter-
mined which describe the gecmetric shape of the catenary, and give
the length of cable, s, between the origin point, A, and the point
(x, y) on the cable (Fig. 13).

y=acosh £ . . . 0 000w o e e e e e e .(13)
a
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5 =a simh X . . . e e e e e e e e e e e e e (1)
a
where
T
a = H o (15
W

Fig. 14 depicts a family of catenaries. The only distinguishing
variable involved in these curves is the parameter a . This para-
meter is uniquely determinable for any combination of x, ¥y and L and
reflects a change in either the horizontal tension component or
cable weight. The catenary can be considered as a fundamental

shape for any uniform cable hanging under its own weight.
The Constant~Stress Catenary

Hext to be considered is a tapered cable suspended in a two-
dimensional manner. The constant-stress condition is again imposed.
Thus Eq. 5, derived for a tapered axlially suspended cable, still
holds.

In this case, however, if the condition

4T = 47

¥

as in the catenary and

T=€T 24 m °

H v
are incorporated, Eq. 5 becomes
2 2
ar =y Vi Ty A5 . o e (16)
¥ o

Since v will be a constant, it is possible to proceed in a manner
similar to that of the catenary derivation. The complete derivation

of the constant-stress catenary is presented in Apperdix III. The



Fig. 14 Family of Catenaries
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important geometrical relationships that are determined and will

be required subsequently are

¥y = c¢ log sec * (17}
e C
L
-1 ¢
s = ¢ cosh e T )
and
T
A o= E cosh s . v e e (19)
g C
where
S O §<1¢
Y

Eg. 1T defines the geometrical form of the constant—stress catenary.

1t has the general mathematical form f (x) = log sec x (when ¢ = 1).
e

To assist the reader in visualizing the curve shape, this function

hes been plotted in Fig. 15.

= K e o + x—>

aT
2 7

Fig. 15 Log (88¢ x JFunctinn
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It should be noted that as x approaches asymptotes of + %., N

approaches = . Therefore, the values of ] %-x [ are always less
than l g.i . For the convenience of the reader, in applying the
constant-stress catenary relations, a table of log(sec x) functions
has been computed and is included as Appendix V.

Bg. 18 defines the length of the cable, as neasured from the
tangency point A as shown in Fig. 13.

Eq. 19 defines the required cross-sectional area variation
such that the stress is constant along the length of the cable.
The term_%'can be considered a parameter for the constant stress
catenary, similar to the catenary parameter o .

Fgs. 17 and 18 can be rearranged as follows:

Yy loge sec Y%
o

o}
1y
e =secyx
g
and
Yy
o
e = cosh =
o}
AbA
]
The term, € is seen to be the function describing the area ratio

from the tapered axially suspended cable. Therefore, Egs. 17 and
18 are very closely related to Egs. 8 and 11, as might be expected.
The left-hand term indicates the effect of depth on the taper,

while the right-hand term controls the cable-length relationship.
Y

¥
Thus e © holds for both types of constant stress cables that have
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been discussed, while the right-hand term represents the modification
based on length of cable and geometry. It can then be seen that
for a given parameter c, AO and depth, the area of the cable is
the same, at any given depth, for an axially suspended comstant-
stress cable as for a constant-stress catenmary. Fig, 7 thus applies
in two-dimensional cases also.

Fig. 16 illustrates what might be considered to be typical of
ocean-mooring geometries using the constant-stress catenary, with
Y and ¢ selected to represent appropriate values for steel wire
rope. Note that if AO is held constant, then varying o has an

effect similar to varying Ty in the simple catenary since T, = Ty

T.
and __H = ¢ when s = 0, Therefore, these curves can be thought

A
o}

of as representing three different values of TH, assuming constant

A, or three different values of Ao assuming constant Ty. Both

alternatives assume a constant Y.
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Comparison

A comparison will now be made of the tapered cable to the common
cable under two-dimensional conditions. As noted, Fig. T applies
t0 both the E~tapered cable and the constant-stress catenary. Figs.
9 and 10 are then of general application and further discussion of
load-carrying capacity and cable weight is not required.

A11 of the comparisons that follow are based on a mooring
system geometry in which the mooring cable is tangent to the sea
bottom. This has been specified for simplicity since, as Ref. 2
demonstrates, an infinite number of other possibilities exist.

The situations depicted are representative of mooring espplica-
tions using tapered cables, and lend themselves to comparison with
present mooring practice. These comparisons are intended to illius-
trate the trends %o be expected and to provide a qualitative under-
standing of the relationships. Consideration ié first given to the
purely mathematical form of the catenary and constant-gstress catenary
geometrical expression. This is shown in Fig. 17 with both curves
fitted between the points (0,0) and (1,000, 10,000). These curves
are tangent to the x axis (0,0) as they might be in a slack moor.

Tt should be noted that the axis scale is distorted. This has the
effect of exaggerating the curve separation due to the closeness of
the curves.

The distinction in geometry between the curves is largely due to

the weight of the constani-siress catenary cable being concentrated
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in the upper section of the cable. The curved portion will be much
smaller in cross-sectional area than the upper, nearly straight
section and contains very little of the total weight of the cable.
This lack of bottom weight results in a smaller horizontal tension
component than that of a catenary with a similar top diameter.
However, these curves are not principally related to diameters or
horizontal temsions. They can be considered as generic, as they
fit many combinations of cable sizes, horizontal tensions, cable
densities, etc. and should be viewed as mathematical shapes only.
When considering factors other than the cable geometry, as defined
by the curve parameter (a or c), account must also be taken of the
material, the cable size, etc.

Fig. 18, also a generic curve, illustrates the effect of
similar length cables on the geometry. In this case both curves
or cables are 10,440 feet long and the horizontai tensions are
again different. The catenary can be observed to extend much
further in the horizontal direction.

Fig. 19 departs from the generic curve, as a comparison is
made between two cables with the same horizontal tension component.
This illustrates the major difference in the concentration of weight
between the two types of cables. The weight near the bottom reduces
the horizontal displacement of the catenary, whereas the constant
stress cable is very sensitive to changes in horizontal force. This

configuration could represent a moored buoy under the influence
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of a steady wind load. ITf the cable is subjected to an underwater
current load another configuratiocn results.

The finite-element computer program described in Appendix VI
was used to simulate the effects of current on the cable. Resulting
configurations are shown in Fig. 20. Both .5-kmot and l-knot currents
were imposed in the x direction. The large effect of the current
on the constant stress cable 18 clearly indicated whereas a very
small effect is observed on the catenary. This is as expected
since, as Fig. 17 reveals, the constant-stress cable 1s very sensi-
tive to TH. Fig. 21 provides a plot of the corresponding cable
stresses under the same loading conditions represented by Fig. 20.
It should be noted that tapered cables subjected to current loads
can no longer be considered to be under constant stress. This in-
dicates that to obtain maximum benefit from a tapered cable, it is
necessary to incorporate the combined influence of any anticipated

currents as well as static loading into the design analysis.
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CHAPTER V

CONCLUSIONS

This investigation has resulted in the development of analytical
expressions describing the static behavior of tapered cables for
two cases of practical importance. These equations have been sub-
stantiated by use of a finite-element computer program which has also
enabled consideration of the effects of currents on such cables.
Both common and tapered cables have been compared under several selec—
ted conditions leading to the following conclusions?

For any giver length and top diameter, the tapered cable weighs
less and has a greater load capacity than a similar common cable.
This results in the tapered cable having a load capacity and result-
ing application at depths or cable lengths not possible with a
common cable. In general, these advantages are all magnified for
materials of increasing density and decreasing strength, or for in-
creasing safety factors. There are no advantages in tapering for
materials which are neutrally buoyant, since the cable weight does
not have any effect on the loading. The tapered cable has the great-
est value for applications requiring very long lengths or great depths.

The disadvantages of the tapered cable appear as follows: In
& mooring situation the tapered cable exhibits greater metion on
deflection due to currents and tends tc be less desirable in any situ-

ation where welght is an adventage. The design of a tapered cable



depends on the application with constant stress only achievable at
the design conditions. Tapered cable manufacturing will probably
prove difficult and/or expensive, although this was not examined in
this study. Tapered cables appear to be applicable to both towing
and mooring situations with no clear delineation of preferred usage
between the two. However, this thesis should be congidered as a
beginning for tapered cable studies with more parametric evaluation
being in order. Further work is also needed to investigate the
practicality and possibility of manufacture of such cables, and to
examine their elastic properties, particularly with regard to

dynamic performance.

L7
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APPENDIX TI

DERIVATION OF CATENARY EQUATTIONS

The method used herein to derive the eguations for the common
catenary utiliges a vectorial format following the approach taken
by Dominguez (2).

Consider Fig 22. As represents a small portion of a cable
acted upon by a distributed load, w(s), whose resultant is w A s.

It is assumed that the cable is completely flexible and inexten-

sible. The cable tensions at either end are represented by T and
T + AT respectively, with r being the position vector of any point
a distance s along the cable.
For statie equilibrium

ZF=0
Where F represents the external forces acting on.the element.
Therefore,

T+ {T + AT) + w as = 0

which reduces to



Fig, 22

Equilibrium of a Cable Element Influenced by an External
Loading

51
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Static equilibrium also requires

ZM =0
where ﬁo is the moment produced by a force F about any arbitrary point
C. Therefore,

Fx (Tl (T +47) x (T + aT) + ¥ x Whs = 0

Expansion and division by As gives

[=

+ AT T e A AT+ x T =0

r X
As Ww

>
4]
=3
0

Taking the limit as As +0, AT -0 and Eﬁ* r resulis in

- dT | - d =
I‘X(a‘g+w)+a‘ng-—O
. ar = -

Since Fr 0 from Eq. 23 above,

Then
dr = ;
- z e !
dsx 0O .+ « « v & . a . {24)

Egs {23) and (24) can be considered the basic differential equa-
tions governing the statics of a suspended cable subjected to a dis-
trivuted loading.

I the additional assumption, that the cable is loaded solely

by its own weighl, 1s applied, then

wo=wi(s) = wis)]
where 1, J and k are unit vectérs in the x, y and z directions res-

pectively. The cable tension at any point can be represented as

T=731+73+ TZK R 622D



where Tx’ Ty and TZ are the components of tension T, in the x, y and

z directions (Fig 23).

Then
TEQT%TZ«»TE R =1
% ¥y Z
or
2 2
= + . s N e .o 2
T Ty Ty . (27)
Where
2 2
= + R =06 B
TH Tx Tz (283

Note that T 4is the %total horizontal tension component. The
H

substitution of Eq. 25 into Eg. 23 results in

&Tx _ aT dTZ _
as + dg J EE”'R +wls)y =0

If coefficients of like unit vectors are equated, then

ar

'—""'}—(‘=O .........‘.........(7"‘};E
ds : -
an

2 =g U (i (1)
ds * '

aT
agi+w(s)=0................‘(31)

Egs 29 and 30 indicate that the horizontal components of tension are
constant. Rearranging terms and integrating Eg. 31 yields

Ty = - ‘}:ﬂs)ds + C1 PO (223

wWhere Cl represents a constant of integration. The position veclur

# can be expressed as

F=xi+yi+zk ... 00000 (33
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Fig. 23

Tension Components and Coordinate Systen
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Substituting Eq. 33 into 2b yields

|QJ

+

A=
ol
+

215
Cul

Z T oY .
Sk)x(Txl-i-Ty,j«}-TZk)——O

o

Expanding and separating terms results in

il
&
R
=

Z
"a—"z‘ .« s 8 [ L L L P T S (314')

Bw

Since Tx= constant and

Tz = congtant from Egq. 29 and 30, then

%5-2 X o ConStAND .+ .« e e e h e e e e e e e e (35)
z T,

integrating yields:

T PR O 1)

This reveals that a ceble hanging under its own weight projects as
a straight line in the x-z plane.
Selecting axis location such that z = 0 when x = 0, then

C = 0 and
2

Substituting Eq. 3k into Eq. 32 yields

%.—...-Tl—-fw(s)ds+cl...-.......(38}
&

Considering the case of a homogeneous cable of constant diameter,

results in uniform loading
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w(s) = —-w = constant weight/unit length of cable

and
r . L f_
Az o wds + Cl
Z
or
gx..—_.EE.-*-
dz T Cl
z
If the origin of the ccordinate system is selected at the point
where
dy
dz 0
Then s = 0, Cl = 0 and
dy _ ws
az =7 T D

Refering then to Eq. 3k

T = ws
¥y

A similar substitution of Eq. 34 into Eq. 32, integrating and

evaluating boundary conditions yields

dy . ¥s
i e e . e . (koY

Next consider the geometrical relationship

d32 = dx2 + dy2 + dz2

Dividing by d22 gives

d52 dx2 + dl?
dzg dzg dza

A R €
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Substituting Egs. 35 and 39 into Eq. 41 and combining terms yields

2 2 2
is"":‘g i + T + (ws)
dz T

which when inverited, and the variables separated gives
T ds
Z

#TE + T2 + (ws)2
X Z

dz =

Inserting Eaq. 28
Tz as

gTHE + (ws)2

Rearranging and integrating gives

dz =

2= % sinht T2+ 0L L. (h2)
W T 3
q
Ifz=0ats=0,thenC3=O.
Tz. 1 ws
Z = —=  8inh T m . 0w e e e e e e e e e B
W T
H
and inverting
T
s=—-§-sinhﬂ................(hh)
T
Z
By a similar approach
T 1
x = & ginh R S 1
W T
H
and inverting
T
H .
= —= gi — e
swsa_nhT...............(JE)

™
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Substituting Eq. 4b into Eg. 39

T
dy = _H sinh wz
dz T T
7 z
Integrating gives
T
- H WZ
y = COShT +Ch, e e . c oo (BT
Z
Ty
Letting y = — at z = 0, then C, = 0
W I
and
T
_ H WZ
y = cosh TZ D 15D

cosh %E- T g [t

X

Finally, it can be seen that

T WZ TH WX
y:FCOShT—=;‘:—COSh 5’"‘ ........(50)
z X
T T
_H . W&o _ H . WX
s = = sinh TZ = = gsinh f; P D

which constitute the symmetric equations of the catenary in three-

dimensional space.



APPENDIX III
DERIVATION OF CONSTANT-STRESS CATENARY

The method of solution used bvelow is basically similar to that

59

uged in Appendix II. This constant-stress catenary derivation starts

with the basic cable equations

at -

T A S (23)
and

ar =

‘a‘ETXT—-O.................(Qh)

discussed in Appendix I. Assuming that the cable is loaded solely

by its own weight, it was shown that

dT
x

PRI 0

e O §=1°

and dT
Z

ds

1
o
—
[V
j=)

aT
— 4 wis) = 0

P e e e e e e e e e (31

In the case of the tapered cable, it must be recognized that w(s)
varies throughout the total length of the ceble. If it is assumed

that the material is of constant density, then

wis) = - vyals) . . .. ... ... ... (52)
where v = welght per unit volume of the cable material and A{s) is

the cross-sectional area of the cable (Fig. 24).
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Typical Section of Cable

Fig. 2h
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Inserting Eq. 52 into Eg. 31 results in
d‘I‘y=yA(s)ds.................(53)

If constant stress is required, then the cross-sectional area and

cable tensgion at any point are related:

R 1

rearranging and integrating yields

5 5.y
Loge (Ty + ﬁg TH + Ty } o= S8+ C ... (55)
Applying the boundary conditions (Fig. 25)

T
¥

Cs

fl

O at s =0, gives

I

che TH

thus

T o+ X,
Log, ( 5 T, +T ") o s *Log, T

Combining terms results in

T + T + T
y H Y.y =

Log, (

Qp<

which by identity is

T
Sinhg—s—=~1 . (56)
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Eq. 34 can be inserted into Eq.4l and with some mani-

pulation produce

B 1 NN C1 0
T (is,g_l
dy

Substituting Egq. 57 back into Eg. 56 gives

1
2
#(-;13) -

which by rearrangement and use of identity becomes

Sinh gi =

ay xS
i Tanh e I A R {58}

2
The square root of (%%J produces both positive and negative roots.

Since the negative root represents negative vaiues of Tanh §§3 it
will represent, when integrated, the negative (or mirror image) of
the curve of interest, Cosh géu Therefore, the negative rocot is dis-
carded since it has no physical meaning for mooring applications.
These functions are illustrated in Fig. 26. BSeparating variables in

Egq. 58 and integrating gives

y = % ILog Cosh L2 4 ¢ B 614D
Y e g

6

Applying the boundary conditions of y = O when s = 0, cosh = 1,

Log 1= 0, 06: 0 and

y=Tleg, Cosh 22 .. ... (60)
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Inverting Eg. 60 produces

and

>

Cosh -1 e 9= %ﬁ

Differentiation then yields

which reduces to

Inserting Bq. 3V for X yields

dz
Ly
- e dy
Lygo Ty
e e -1
Note: Since Tx and TZ are constants, then
‘I‘x2
(/) +1 ig also a constant
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Integrating yields

= %-sec_l e + C I <=3

Considering the boundary conditions
z = 0 and C._r = 0 wvhen y = 0

i.e. curve goes through the origin, and

inverting

Taking the log of each side

=9
y-YLogesec e e e e e e . (Bh)
Using Eq. 37, Eq. 64 becomes
.9 y 2. 2
y =3 Log, sec —~ §x +z e e e e e e e .. (65)

This constitutes the principal equation of a constant-stress catenary.

Cable Tension

Combining Eq. 27 with Eq. 56 yields
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Substituting Eq. 28 for TH

T=¥T2+T2 cosh X5 . . ... ... (66)
X Z (8]

Eq. 66 depicts the tension at any point a distance s along the cable.

Cable Ares

As noted previously, Eq. 54

A==
g

Substituting Eq. 66 for T gives

Iy
X Z

a

A =

COShgi..........(m)

"A" represents the cross sectional area of the cable at a distance

s from the bottom end, (Fig. 25).

Cable Weight

The total cable weight W can be expressed as

TH
W o= J{} Ads = fvy P Cosh gE-ds

which upcon integretion becomes

- : Xs,
W TH Sinh 5 + 08

Considering the boundary conditions at

I

s 0, W= 0 and 08 =0

Therefore

in Y5
W TH Sinh o
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Substituting Eq. 28 for TH

which represents the weight of a length s of cable, measured from

the origin.

(68)
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APPENDIX IV

Notation

area

cable area at distance L

cable area at bottom end of tapered cable
cable area distance s along a tapered cable
diameter at distance I, along a tapered cable
bottom diameter of tapered cable

top diameter of tapered cable

factor of safety

total cable length

load supported by the cable

allowable load

cable tension

horizontal ceable tension component

vertical component of cable tension, = Ty

component of cable tension in X directicn
component of cable tension in Y direction

component of cable tension in % direction

total cable weight
catenery peramelber
constant-stress catenary parasmeter

length along cable
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Notation (Continued)

welght per unit length of cable
weight as a function of distance along cable
base coordinates

subsecript o indicates end condition

unit vectors x, y, z directions
position vector for a point in space
vectorial representation of tension
cable tensile stress = T/A

cable unit weight
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APPENDIX VI

COMPUTER PROGRAM FOR A TAPERED CABLE

Current loading on cable systems presents one of the more
difficult problems to the analyst. This is due to both the non-
linearity of hydrodynamic loads and to the configuration depen~
dence of such loads. These difficulties have lead to the frequent
use of finite-element models with a digital computer to handle
cable/current problems. Although these methods are approximate,
the solutions tend toc be very good and in general can be made in-
creasingly accurate by decreasing the size and increasing the number
of elements within cost constraints.

To enable a simulation of the tapered cable concept, a finite-
element computer program has been prepared. This is largely based
on the program discussed by Dominguez (3), using the same hydro-
dynamic sub-program for calculating drag forces but having an addi-
tional sub-program to generate ceble diameter for vearious types
of tapered cables. The method, accuracy to be cbtained, and the
hydrodynamic loading criteria have been fully described in re-
ference (3). The program has provision for accepting any type
of taper and presently contains four types -—— common cable,

constant-stress catenary, E-tapered and straight-taper "D,

Results

The program was first used (Fig. 27) to compare its results to

[
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the analytical expression for static cable configurations previocusly
derived., It was then used to simulate the effects of current on
the same cable configuration.

Fig. 27 illustrates two curves fitted through (0.0) and
(5,000, 10,000). 1In this case, the cables were selected and were
also simulated, using a finite element model, to confirm the equa-
tions and trends previously defined. Table II lists the coordinates
along the constant-stress catenary and shows the very good fit
obtained. Fig. 28 depicts the stress obtained from the same finite-
element simulations. The common cable has less stress at the
bottom, as excess material is present as illusirsted in Fig. 6.

The tapered cable, on the other hand, has a nearly constant
stress throughout its length as anticipated. The computer simula-
tion therefore, presents a very satisfactory cable model, confirming

the analytical results presented elsewhere in this report.



80

3}
0
=4
>
-
©w
2,
)]
-t
[} 2L
L4
19
2
"
e Cammon Cable
o
-
L]
! ‘=
—
/ \ Constant  Stress
. | i i i J
[+ 1000 2000 aco0 4000 5600

- DISTANCE - §1.

Fig. 28 Cable Tensile Stress



Table 2. - Comparison - Analytical to
Finite-Element Simulation

Calculsted Tinite Element

X = Y = X = Y =
0.00 0.00 0.00 0.00
500.00 38.21 488.90 3L,96
1000.00 154,67 967.15 143.76
1500.00 355.19 1535.33 373.22
2000.00 650.86 1957.40 623.08
2500.00 1060.78 2526.05 1089.2k
3000.00 1618.09 3012.88 16L0.62
3500.00 2384, 27 3481. 24 2359.73
k000,00 3Lk90.12 3988.75 3475.53
1500.00 5298.95 L507.02 5366.95

5000.00 6955.38 hook, 43

9999.7T

81





